Polynomial Approximation with Bounds

LAWRENCE ZALCMAN

Department of Mathematics, University of Maryland, College Park, Maryland 20742 Communicated by Oved Shisha Received March 8, 1981

Let Γ be a proper closed arc of the unit circle T. According to the Weierstrass Approximation Theorem, each function continuous on Γ can be approximated uniformly by polynomials in z (= $e^{i\theta}$). If we require additionally that the suprema of the approximating polynomials remain uniformly bounded on the open unit disc Δ , the possibility of approximation becomes severely limited.

THEOREM 1. A function $f \in C(\Gamma)$ is uniformly approximable (on Γ) by polynomials p_n satisfying $|p_n(z)| \leq M$, $z \in \Delta$, if and only if there exists a function g analytic on Δ , $|g(z)| \leq M$, such that

$$f(e^{i\theta}) = \lim_{r \to 1} g(re^{i\theta}), \qquad e^{i\theta} \in \Gamma.$$

Remark. It follows easily from the Poisson representation that the function g actually extends continuously to $\Delta \cup \gamma$, where γ is the open arc obtained by deleting the endpoints of Γ ; at these endpoints, g may actually have a nontrivial cluster set (though, of course, its extension has the appropriate one-sided limits there).

Proof. Suppose first that f is so approximable. Let $\Delta_r = \{z : |z| \le r\}$ and let D_r be the closed convex hull of $\Delta_r \cup \Gamma$. We claim that the polynomials p_n converge uniformly on D_r for each r, 0 < r < 1. For this it is sufficient to show that the sequence $\{p_n\}$ is uniformly Cauchy on each D_r .

Denote the Poisson kernel for $z \in \Delta$ by $P_z(\theta)$. Since $\log |p_n - p_m|$ is subharmonic, we have

$$\log |p_n(z) - p_m(z)| \leq \int_0^{2\pi} \log |p_n(e^{i\theta}) - p_m(e^{i\theta})| P_z(\theta) d\theta$$
$$= \int_{T \setminus \Gamma} + \int_{\Gamma}.$$
379

0021-9045/82/040379-05\$02.00/0

Copyright © 1982 by Academic Press, Inc. All rights of reproduction in any form reserved.

The first integral on the right is clearly bounded by $\log 2M$. For *n* and *m* large enough, the second integral is bounded by $\omega_{\Gamma}(z) \log \varepsilon_{nm}$, where ω_{Γ} is the harmonic measure of Γ and

$$\varepsilon_{nm} = \max_{r} |p_n(e^{i\theta}) - p_m(e^{i\theta})| < 1.$$

Letting $C_r = \min_{D_r} \omega_r(z) > 0$, we have

$$\sup_{D} \log |p_n(z) - p_m(z)| \leq \log 2M + C_r \log \varepsilon_{nm},$$

which tends to $-\infty$ as $n, m \to \infty$. Thus

$$\lim_{n,m\to\infty} \sup_{D_r} |p_n(z) - p_m(z)| = 0.$$

as required.

Conversely, suppose that g satisfies the conditions of the theorem. Then g is continuous, hence uniformly continuous, on the closed set $\{re^{i\theta} \in \Gamma, 0 \leq r \leq 1\}$. Thus, for r sufficiently close to 1, the function $g_r(z) = g(rz)$ approximates f(z) closely for $z = e^{i\theta} \in \Gamma$. Since g_r is analytic on the closed unit disc and bounded by M it can be approximated uniformly on the unit circle by a polynomial with norm no greater than M. This polynomial approximates f on Γ .

The first half of the argument given above actually shows that if the p_n approximate f uniformly on Γ and

$$\int_{0}^{2\pi} \log^{+} |p_{n}(e^{i\theta})| d\theta \leq M, \qquad n = 1, 2, \dots$$

then f has an analytic continuation into the full unit disc. It would be interesting to determine how badly unbounded the polynomial approximants of a function which does *not* admit such continuation must be.

One can ring the changes on Theorem 1 by altering variously the set on which one approximates, the sense in which approximation is required to hold, and the precise conditions of boundedness. A typical example is provided by the following result.

THEOREM 2. Let $E \subset T$ be a set of positive measure and let $q \ge 1$. A function f on E is the (pointwise, almost everywhere) limit of polynomials p_n satisfying $||p_n||_q \le M$ if and only if there exists a function $g \in H^q$, $||g||_q \le M$, such that

$$f(e^{i\theta}) = g(e^{i\theta}) \equiv \lim_{r \to 1} g(re^{i\theta})$$
 a.a. $e^{i\theta} \in E$.

Proof. Since $||p_n||_q \leq M$, the functions p_n are uniformly bounded on each compact subset of Δ and hence form a normal family. Thus, a subsequence, which we again denote by $\{p_n\}$, converges uniformly on compact to a function g analytic on Δ . Since for each 0 < r < 1

$$\frac{1}{2\pi} \int_0^{2\pi} |g(re^{i\theta})|^q d\theta = \lim_{n \to \infty} \frac{1}{2\pi} \int_0^{2\pi} |p_n(re^{i\theta})|^q d\theta$$
$$\leqslant \lim_{n \to \infty} \frac{1}{2\pi} \int_0^{2\pi} |p_n(e^{i\theta})|^q d\theta \leqslant M^q.$$

it is clear that $g \in H^q$, $||g||_q \leq M$. Now by Hölder's inequality, $||p_n||_1 \leq ||p_n||_q \leq M$, so for some subsequence, which we again denote by $\{p_n\}$, the measures $p_n(e^{i\theta}) d\theta$ tend weak * to a measure μ which satisfies

$$\int P_z d\mu = \lim_{n \to \infty} \int P_z p_n d\theta = \lim_{n \to \infty} p_n(z)$$
$$= g(z) = \int P_z g d\theta$$

for each $z \in \Delta$. By the uniqueness theorem for the Poisson integral, $d\mu = g(e^{i\theta}) d\theta$.

Now since $p_n \rightarrow f$ a.e. on E, Fatou's lemma yields

$$\int_{E} |f| \, d\theta \leqslant \lim_{n \to \infty} \int_{T} |p_n| \, d\theta \leqslant 2\pi M,$$

so that f is finite a.e. on E. By Egoroff's theorem, there exists a sequence of sets $E_1 \subset E_2 \subset \cdots$ contained in E such that $p_n \to f$ uniformly on each E_k and $E \setminus \bigcup E_k$ has measure zero. Fixing k, we have

$$\int P_z g d\theta = \lim_{n \to \infty} \int P_z p_n d\theta$$
$$= \lim_{n \to \infty} \left\{ \int_{E_k} P_z p_n d\theta + \int_{T \setminus E_k} P_z p_n d\theta \right\}$$
$$= \int_{E_k} P_z f d\theta + \lim_{n \to \infty} \int_{T \setminus E_k} P_z p_n d\theta$$

for all $z \in A$. The uniqueness theorem shows that $g(e^{i\theta}) = f(e^{i\theta})$ a.e. on E_k and hence a.e. on E.

Conversely, suppose $g \in H^q$. The functions $g_n(z) = g((1 - 1/n)z)$ are analytic on the closed disc and satisfy $||g_n||_q \leq ||g||_q$. Approximate each g_n

uniformly on the closed disc to within 1/n by a polynomial p_n satisfying $||p_n||_q \leq ||g_n||_q$. Since $g_n(e^{i\theta}) \rightarrow g(e^{i\theta})$ a.e. on *T*, we have also $p_n(e^{i\theta}) \rightarrow g(e^{i\theta})$ a.e.

The argument given above actually shows that the full sequence $\{p_n\}$ converges to g uniformly on compact subsets of Δ . Indeed, each subsequence of $\{p_n\}$ contains a convergent subsequence the boundary values of whose limit agree with f a.e. on E, a set of positive measure. Thus any two such limits must be identical. Actually, the first half of the proof of Theorem 1 can be adapted to give a proof of the corresponding part of Theorem 2; and, conversely, it is evident that the argument used in Theorem 2 applies equally well to Theorem 1.

In case the boundedness hypothesis is strengthened to require that the l^1 norms of the approximating polynomials remain uniformly bounded, the possibility of nontrivial approximation evaporates completely: the only functions so approximable are (restrictions of) absolutely convergent Taylor series. While this follows fairly routinely from some general functional analysis, it is just as easy to give a direct proof.

Indeed, let $p_n(z) = \sum_k a_k(n) z^k$ and suppose that $\sum_k |a_k(n)| \leq M$ for $n = 1, 2, \dots$ Since $p_n(z)$ converges uniformly to $g(z) = \sum a_k z^k$ on a neighborhood of 0, we have, for each $k, a_k(n) \rightarrow a_k$ as $n \rightarrow \infty$. We claim that $\sum_k |a_k| \leq M$. Otherwise, there exists N such that $\sum_{k=0}^N |a_k| > M$. Choosing unimodular constants c_k $(0 \leq k \leq N)$ so that $a_k c_k = |a_k|$, we have

$$M \ge \sum_{k=0}^{N} |a_k(n)| \ge \left| \sum_{k=0}^{N} a_k(n) c_k \right| \to \sum_{k=0}^{N} a_k c_k$$
$$= \sum_{k=0}^{N} |a_k| > M,$$

a contradiction.

The knowledgeable reader will recognize the close connection between the results discussed above and the Khintchine–Ostrowski theorem: a uniformly bounded sequence of functions analytic on Δ which converges on a subset E of T having positive measure converges uniformly on compact subsets of Δ ; cf. [1-4].

ACKNOWLEDGMENTS

I should like to thank Shaul Foguel for having asked me the question which prompted this note. This paper was prepared while the author was a visiting professor at the Hebrew University of Jerusalem and Bar-Ilan University. Research supported by NSF Grant MCS 78-00811 A02, the General Research Board of the University of Maryland, and the Lady Davis Fellowship Trust.

POLYNOMIAL APPROXIMATION

References

- 1. A. KHINTCHINE, Sur les suites de fonctions analytiques bornées dans leur ensemble, Fund. Math. 4 (1923), 72-75.
- 2. A. KHINTCHINE, On sequences of analytic functions, Recueil Math. Moscou (Mat. Sb.) 31 (1922-24), 147-151. [Russian]
- 3. A. OSTROWSKI, Auszug aus einem Briefe von A. Ostrowski an L. Bieberbach, Jber. Deutsch. Math.-Verein. 31 (1922), 82-85.
- A. OSTROWSKI, Über die Bedeutung der Jensenschen Formel f
 ür einige Fragen der komplexen Funktionentheorie, Acta Lit. Sci. Regiae Univ. Hungar. Francisco-Josephinae I (1922-23), 80-87.