Polynomial Approximation with Bounds

Lawrence Zalcman
Department of Mathematics, University of Maryland. College Park, Maryland 20742
Communicated by Oved Shisha
Received March 8, 1981

Let Γ be a proper closed arc of the unit circle T. According to the Weierstrass Approximation Theorem, each function continuous on Γ can be approximated uniformly by polynomials in $z\left(=e^{i \theta}\right)$. If we require additionally that the suprema of the approximating polynomials remain uniformly bounded on the open unit disc Δ, the possibility of approximation becomes severely limited.

Theorem 1. A function $f \in C(\Gamma)$ is uniformly approximable (on Γ) by polynomials p_{n} satisfying $\left|p_{n}(z)\right| \leqslant M, z \in \Delta$, if and only if there exists a function g analytic on $\Delta,|g(z)| \leqslant M$, such that

$$
f\left(e^{i \theta}\right)=\lim _{r \rightarrow 1} g\left(r e^{i \theta}\right), \quad e^{i \theta} \in \Gamma
$$

Remark. It follows easily from the Poisson representation that the function g actually extends continuously to $\Delta \cup \gamma$, where γ is the open arc obtained by deleting the endpoints of Γ; at these endpoints, g may actually have a nontrivial cluster set (though, of course, its extension has the appropriate one-sided limits there).

Proof. Suppose first that f is so approximable. Let $\Delta_{r}=\{z:|z| \leqslant r\}$ and let D_{r} be the closed convex hull of $\Delta_{r} \cup \Gamma$. We claim that the polynomials p_{n} converge uniformly on D_{r} for each $r, 0<r<1$. For this it is sufficient to show that the sequence $\left\{p_{n}\right\}$ is uniformly Cauchy on each D_{r}.

Denote the Poisson kernel for $z \in A$ by $P_{z}(\theta)$. Since $\log \left|p_{n}-p_{m}\right|$ is subharmonic, we have

$$
\begin{align*}
\log \left|p_{n}(z)-p_{m}(z)\right| & \leqslant \int_{0}^{2 \pi} \log \left|p_{n}\left(e^{i \theta}\right)-p_{m}\left(e^{i \theta}\right)\right| P_{z}(\theta) d \theta \\
& =\int_{T \backslash \Gamma}+\int_{\Gamma} \tag{379}
\end{align*}
$$

The first integral on the right is clearly bounded by $\log 2 M$. For n and m large enough, the second integral is bounded by $\omega_{\Gamma}(z) \log \varepsilon_{n m}$, where ω_{Γ} is the harmonic measure of Γ and

$$
\varepsilon_{n m}=\max _{\Gamma}\left|p_{n}\left(e^{i \theta}\right)-p_{m}\left(e^{i \theta}\right)\right|<1 .
$$

Letting $C_{r}=\min _{D_{r}} \omega_{\Gamma}(z)>0$, we have

$$
\sup _{D_{r}} \log \left|p_{n}(z)-p_{m}(z)\right| \leqslant \log 2 M+C_{r} \log \varepsilon_{n m},
$$

which tends to $-\infty$ as $n, m \rightarrow \infty$. Thus

$$
\lim _{n, m \rightarrow \infty} \sup _{D_{r}}\left|p_{n}(z)-p_{m}(z)\right|=0 .
$$

as required.
Conversely, suppose that g satisfies the conditions of the theorem. Then g is continuous, hence uniformly continuous, on the closed set $\left\{r e^{i \theta}: e^{i \theta} \in \Gamma\right.$, $0 \leqslant r \leqslant 1\}$. Thus, for r sufficiently close to 1 , the function $g_{r}(z)=g(r z)$ approximates $f(z)$ closely for $z=e^{i \theta} \in \Gamma$. Since g_{r} is analytic on the closed unit disc and bounded by M it can be approximated uniformly on the unit circle by a polynomial with norm no greater than M. This polynomial approximates f on Γ.

The first half of the argument given above actually shows that if the p_{n} approximate f uniformly on Γ and

$$
\int_{0}^{2 \pi} \log ^{+}\left|p_{n}\left(e^{i \theta}\right)\right| d \theta \leqslant M, \quad n=1,2 \ldots
$$

then f has an analytic continuation into the full unit disc. It would be interesting to determine how badly unbounded the polynomial approximants of a function which does not admit such continuation must be.

One can ring the changes on Theorem 1 by altering variously the set on which one approximates, the sense in which approximation is required to hold, and the precise conditions of boundedness. A typical example is provided by the following result.

Theorem 2. Let $E \subset T$ be a set of positive measure and let $q \geqslant 1$. A function f on E is the (pointwise, almost tverywhere) limit of polynomials p_{n} satisfying $\left\|p_{n}\right\|_{q} \leqslant M$ if and only if there exists a function $g \in H^{q},\|g\|_{q} \leqslant M$, such that

$$
f\left(e^{i \theta}\right)=g\left(e^{i \theta}\right) \equiv \lim _{r \rightarrow 1} g\left(r e^{i \theta}\right) \quad \text { a.a. } \quad e^{i \theta} \in E .
$$

Proof. Since $\left\|p_{n}\right\|_{q} \leqslant M$, the functions p_{n} are uniformly bounded on each compact subset of Δ and hence form a normal family. Thus, a subsequence, which we again denote by $\left\{p_{n}\right\}$, converges uniformly on compacta to a function g analytic on Δ. Since for each $0<r<1$

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|g\left(r e^{i \theta}\right)\right|^{q} d \theta & =\lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p_{n}\left(r e^{i \theta}\right)\right|^{q} d \theta \\
& \leqslant \varlimsup_{n \rightarrow \infty} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p_{n}\left(e^{i \theta}\right)\right|^{q} d \theta \leqslant M^{q}
\end{aligned}
$$

it is clear that $g \in H^{q},\|g\|_{q} \leqslant M$. Now by Hölder's inequality, $\left\|p_{n}\right\|_{1} \leqslant$ $\left\|p_{n}\right\|_{q} \leqslant M$, so for some subsequence, which we again denote by $\left\{p_{n}\right\}$, the measures $p_{n}\left(e^{i \theta}\right) d \theta$ tend weak $*$ to a measure μ which satisfies

$$
\begin{aligned}
\int P_{z} d \mu & =\lim _{n \rightarrow \infty} \int P_{z} p_{n} d \theta=\lim _{n \rightarrow \infty} p_{n}(z) \\
& =g(z)=\left\lceil P_{z} g d \theta\right.
\end{aligned}
$$

for each $z \in \Delta$. By the uniqueness theorem for the Poisson integral, $d \mu=g\left(e^{i \theta}\right) d \theta$.

Now since $p_{n} \rightarrow f$ a.e. on E, Fatou's lemma yields

$$
\int_{E}|f| d \theta \leqslant \underline{\varliminf_{n \rightarrow \infty}} \int_{T}\left|p_{n}\right| d \theta \leqslant 2 \pi M
$$

so that f is finite a.e. on E. By Egoroff's theorem, there exists a sequence of sets $E_{1} \subset E_{2} \subset \cdots$ contained in E such that $p_{n} \rightarrow f$ uniformly on each E_{k} and $E \backslash \bigcup E_{k}$ has measure zero. Fixing k, we have

$$
\begin{aligned}
\int P_{z} g d \theta & =\lim _{n \rightarrow \infty} \int P_{z} p_{n} d \theta \\
& =\lim _{n \rightarrow \infty}\left\{\int_{E_{k}} P_{z} p_{n} d \theta+\int_{T \backslash E_{k}} P_{z} p_{n} d \theta\right\} \\
& =\int_{E_{k}} P_{z} f d \theta+\lim _{n \rightarrow \infty} \int_{r \backslash E_{k}} P_{z} p_{n} d \theta
\end{aligned}
$$

for all $z \in \Delta$. The uniqueness theorem shows that $g\left(e^{i \theta}\right)=f\left(e^{i \theta}\right)$ a.e. on E_{k} and hence a.e. on E.

Conversely, suppose $g \in H^{4}$. The functions $g_{n}(z)=g((1-1 / n) z)$ are analytic on the closed disc and satisfy $\left\|g_{n}\right\|_{q} \leqslant\|g\|_{q}$. Approximate each g_{n}
uniformly on the closed disc to within $1 / n$ by a polynomial p_{n} satisfying $\left\|p_{n}\right\|_{q} \leqslant\left\|g_{n}\right\|_{q}$. Since $g_{n}\left(e^{i \theta}\right) \rightarrow g\left(e^{i \theta}\right)$ a.e. on T, we have also $p_{n}\left(e^{i \theta}\right) \rightarrow g\left(e^{i \theta}\right)$ a.e.

The argument given above actually shows that the full sequence $\left\{p_{n}\right\}$ converges to g uniformly on compact subsets of Δ. Indeed, each subsequence of $\left\{p_{n}\right\}$ contains a convergent subsequence the boundary values of whose limit agree with f a.e. on E, a set of positive measure. Thus any two such limits must be identical. Actually, the first half of the proof of Theorem 1 can be adapted to give a proof of the corresponding part of Theorem 2; and, conversely, it is evident that the argument used in Theorem 2 applies equally well to Theorem 1.

In case the boundedness hypothesis is strengthened to require that the l^{1} norms of the approximating polynomials remain uniformly bounded, the possibility of nontrivial approximation evaporates completely: the only functions so approximable are (restrictions of) absolutely convergent Taylor series. While this follows fairly routinely from some general functional analysis, it is just as easy to give a direct proof.

Indeed, let $p_{n}(z)=\sum_{k} a_{k}(n) z^{k}$ and suppose that $\sum_{k}\left|a_{k}(n)\right| \leqslant M$ for $n=1,2, \ldots$. Since $p_{n}(z)$ converges uniformly to $g(z)=\sum a_{k} z^{k}$ on a neighborhood of 0 , we have, for each $k, a_{k}(n) \rightarrow a_{k}$ as $n \rightarrow \infty$. We claim that $\sum_{k}\left|a_{k}\right| \leqslant M$. Otherwise, there exists N such that $\sum_{k=0}^{s}\left|a_{k}\right|>M$. Choosing unimodular constants $c_{k}(0 \leqslant k \leqslant N)$ so that $a_{k} c_{k}=\left|a_{k}\right|$, we have

$$
\begin{aligned}
M \geqslant \sum_{k=0}^{N}\left|a_{k}(n)\right| & \geqslant\left|\sum_{k=0}^{N} a_{k}(n) c_{k}\right| \rightarrow \sum_{k=0}^{N} a_{k} c_{k} \\
& =\sum_{k=0}^{N}\left|a_{k}\right|>M,
\end{aligned}
$$

a contradiction.
The knowledgeable reader will recognize the close connection between the results discussed above and the Khintchine-Ostrowski theorem: a uniformly bounded sequence of functions analytic on Δ which converges on a subset E of T having positive measure converges uniformly on compact subsets of Δ; cf. [1-4].

Acknowledgments

[^0]
References

1. A. Khintchine, Sur les suites de fonctions analytiques bornées dans leur ensemble, Fund. Math. 4 (1923), 72-75.
2. A. Khintchine, On sequences of analytic functions, Recueil Math. Moscou (Mat. Sb.) 31 (1922-24), 147-151. [Russian]
3. A. Ostrowski, Auszug aus einem Briefe von A. Ostrowski an L. Bieberbach, Jber. Deutsch. Math.-Verein. 31 (1922), 82-85.
4. A. Ostrowski, Über die Bedeutung der Jensenschen Formel für einige Fragen der komplexen Funktionentheorie, Acta Lit. Sci. Regiae Univ. Hungar. Francisco-Josephinae l (1922-23), 80-87.

[^0]: I should like to thank Shaul Foguel for having asked me the question which prompted this note. This paper was prepared while the author was a visiting professor at the Hebrew University of Jerusalem and Bar-Ilan University. Research supported by NSF Grant MCS 78-00811 A02, the General Research Board of the University of Maryland, and the Lady Davis Fellowship Trust.

